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Parabolic and hyperbolic traveltimes
In the following, we refer to Figure 1, which shows the
(central)zero-offset ray that starts and ens at the cen-
tral point and two paraxial rays from to
respectively. They all cross at a fixed focus point P. The
reflection point of the central ray is the normal incidence
pointt
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Summary

Three different 2-D traveltime approximations for rays in
the vicinity of a fixed zero-offset ray are presented and
analyzed. All traveltimes are given as three-parameter
expansions involving the emergence angle of the zero-
offset ray with respect to the surface normal, as well as
two wavefront curvatures associated with the zero-offset
ray, namely the normal wave and normal-incidence-point
wave. A comparison of all three multiparameter travel-
time expansions is carried out and their potential for
simulating zero-offset stack sections is discussed.

Introduction

Traveltimes of rays in the (paraxial) vicinity of a fixed
(central) ray can be described by a certain number of
parameters which refer only to the central ray only. The
approximations are correct up to the second order of the
distances between the paraxial and central rays at the
corresponding initial and end points, independently of
any seismic configuration. The traveltime approxima-
tions directly obtained from paraxial ray theory are the
parabolic and the hyperbolic expansions (Schleicher et
al., 1993). If the zero-offset ray is chosen as the cen-
tral ray and assuming two-dimensional propagation, the
parabolic and hyperbolic traveltimes can be expressed by
simple three-parameter expressions, if the medium veloc-
ity at the coincident initial and end points (called central
point) of the central ray is known. The three parame-
ters are (a) the emergence angle  of the zero-offset
ray with respect to the surface normal, (b) the wave-
front curvature  of the normal wave (N-wave), and (c)
wavefront curvature  of the normal-incidence-point
wave (NIP-wave). All these quantities being measured
at the central point. As described in Hubral (1983), the
normal and NIP waves are fictitious eigenwaves which
have proven to be very useful for the description of zero-
offset ray propagation. An appealing alternative travel-
time expansion, also using the same three parameters 

 and  has been recently proposed by Gelchin-
sky et al. (1997). In this new representation, the parax-
ial rays can be specified so as to focus at a certain point of
the zero-offset ray or at an extension to this ray. For this
reason, Gelchinsky’s expression has been referred to as
the multi-focus traveltime. In the second-order approx-
imation, also the multi-focus traveltime agrees with its
parabolic and hyperbolic counterparts. In this paper, we
provide simple derivations of all above-mentioned trav-
eltime expressions and examine their behavior for some
synthetic models. We also discuss the potential of these
formulas for imaging procedures and inversion of the pa-
rameters involved, in particular for multi-focus, which
has already been used for simulating zero-offset sections
out of multi-coverage data.
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FIG. 1. Construction of the focusing wave. Shown is

the normal ray from  to NIP. Also depicted-are two
of all possible paraxial rays (SRG and SRG) that inter-
sect this central ray at a common focus point  These
set of rays defines a fictitious wave called the focusing
wave that starts at  with the wavefront  focuses
at  is reflected at the reflector  and emerges again at

 now with the wavefront 

Following the formalism of Bortfeld (1989) tailored to the
present two-dimensional propagation, the 2 x 2 propga-
tor matrix

 
 

describes a first-order relationship

 
(1)

where  and  are the source and receiver offsets
of the paraxial ray with respect to the central ray. 
and  denote the corresponding slowness projection
differences of these rays onto the seismic line at the ini-
tial and end points, respectively. All these quantities
are measured with respect to a fixed coordinate system
attached to the tangent to the measurement surface at

 Using the fact that the downgoing segment of the
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normal ray connnecting  to NIP is the reverse ray to
the upgoing segment from NIP to  and along similar
lines as in Hubral (1983) and Bortfeld (1989), we can
find the useful relations

         (2)

       (3)

The so-called symplecticity property of propagator ma-
trices, namely the relation AD - BC = 1, produces
the remaining element C. Following Bortfeld (1989) or
Schleicher et al. (1993),we use midpoint and offset co-
ordinates

    
  (4)

to find for the parabolic traveltime

      

    
(5)

and for the hyperbolic traveltime

       

         

In the above formulas,  denotes the two way traveltime
along the central ray.

Multi-focus traveltime
For the computation of the multi-focus traveltime we
consider the bundle of primary reflection rays that focus
a fixed point P. As depicted in Figure 1, we imagine that
all these rays describe a certain fictitious wave, which
we call a focusing wave.For each of the focusing rays
SPRG, the source and receiver offsets  and 
are no longer independent but are related by the condi-
tion that the ray has to pass through the fixed point P.
Our problem is to find a traveltime approximation for
the rays paraxial to the central ray and satisfying this
focusing condition. Let us now designate by  and 
the initial and final wavefronts of the focusing wave, re-
spectively. We approximate  by a circle, calling its
curvature  and its curvature radius  =  Sim-
ilarly, we define the curvature  and curvature radius

=  of the circular approximation of the wave-
front  at the end point G. Let S’ and G’ denote
the points where the focusing ray SPRG hits the initial
and end wavefronts  and  respectively. To inves-
tigate the situation in more detail, let us now consider
the paraxial ray SPRG to be constituted by two ray
segments. The first one connecting S to P and the sec-
ond one describes the remaining path of the reflected ray
from P to R and from there to G. We may then write
the traveltimes  and  along these two ray segments
SP and PRG in the form

         (7)

where  and  are the traveltimes along the ray
segments  and  respectively. The definitions of

 and  are analogous. Note that  coincides with
the traveltime along the central-ray segment from 
to P and  coincides with the sum of the traveltimes
along the central-ray segment from P to NIP and from
NIP to  Approximating the ray segments SS’ and
G’G by straight lines, we find, using simple geometrical
arguments

  (8)

   ( 9 )

Our problem reduces, thus, to the determination of the
curvature radii  and  or equivalently their corre-
sponding curvatures  or  For that matter, we
find it convenient to draw the line normal to the central
ray at point P and consider it as an auxiliary interface.
We also set a local coordinate system at P to locate ray
points and slowness projections which refer to rays ar-
riving to and leaving from this auxiliary interface. We
may now define the two auxiliarypropagator matrices

which correspond to the two (central) ray segments from
 to P and from P to  being reflected at NIP,

respectively. For the two segments SP and PRG of the
paraxial ray SPRG (see Figure 1), the two matrices 
and  set up the first-order relationships

      (11)

 
(12)

Note that the focusing condition at point P has been
incorporated in the above equation systems by imposing
the ray offsets of both segments SP and SRG at P to
vanish and their slowness projections at P to be equal
(denoted by Ap). Usingsimple algebra on the above
equations provides a relationship between the source and
receiver offsets for a focusing ray, namely

    (13)

The traveltimes  and  along the rays SP and PRG
respectively, can be written, following Bortfeld (1989)
and Hubral (1983),
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    ,

(14)

  
 

    

where  and  are
tive central rays and

the traveltimes along therespec-

   
     (15)

are the wavefront curvatures of the fictitious focusing
wave at the initial point S and end point G, respec-
tively. To determine the quantities   and 
we make use of the chain rule of propagator matri-
ces    as well as the symplecticity relations

         After some algebraic
manipulation of the above equations, we find the rela-
tions     and    
Together with the focusing condition, as well as the rep-
resentations (2) and (3) of A and B in terms of  and

 we obtain the final result

   

    
(16)

where

    (17)

is the focusing parameter of Gelchinsky et al. (1997).

Numerical experiments
In order to illustrate the presented traveltime ap-
proximations, we have chosen a synthetic 2D-model,
where a domelike structure is overlain by a smoothly
curved interface as shown in Figure 2.Layer veloci-
ties are assumed to be constant, where  and

 correspond to the first and second layer,
respectively. The reflection response of the dome struc-
ture has been calculated by a ray tracing algorithm. The
corresponding traveltime surface in dependence of mid-
point and half-offset coordinates,  and  respectively,
is displayed in Figure 2 as well.

For a fixed midpoint coordinate  the travel-
time approximations (given in formulas (5), (6) and (14))
are calculated for the reflected wavefield from the dome-
like reflector. Therefore the angle of incidence  of
the zero offset ray, as well as the radii of curvature

=  and   of the two eigen-
waves need to be known. For the case of a known veloc-
ity model, simple geometrical considerations yield these
parameters. In the present case these parameter are:

   and  The result-
ing traveltime surfaces are given in Figure 3. In order to
make comparison with the exact traveltimes visual, 2D-
slices of the traveltime surfaces for constant half-offsets

   2000m are depicted (see Figure 4).

For the zero-offset  case it can be seen that all
three traveltime approximations fit very good to the ex-
act curve. Even away from the chosen midpoint 
455m) the results are good. For intermediate half-offset

 1000m) the approximations are still very good
for the hyperbolic and the multi-focus representation.
The parabolic approximation is good at the chosen mid-
point but deviates from the exact curve for distant mid-
point coordinates. For larger offset  all three
traveltime representations deviate from the exact travel-
time response. However, the multi-focus traveltime ap-
proximation gives still a good fit on the branch for posi-
tive midpoints.

Discussion and Conclusions

Second- and higher-order traveltime expansions have
been of great use for seismic processing for a long time.
For CMP data, the one-parameter, hyperbolic NMO-
traveltime is still routinely used for velocity analysis,
stacking and inversion. More recently, and still for CMP
data, two-parameter, fourth-order NMO-traveltime ex-
pansions are being used for more accurate results (see,
e.g., Ross (1997)and also references therein).

Alternatively, using a full multi-coverage data set along
a seismic line, three-parameter, second-order traveltime
expansions can be used. In this paper, we have compared
the parabolic and hyperbolic traveltimes derived from
paraxial ray theory (see, e.g., Bortfeld, 1989; Schleicher
et al., 1993) with the multi-focus traveltime of Gelchin-
sky et al. (1997). For this purpose, we have reformulated
the three approximations in terms of the same three pa-
rameters, namely the emergence angle of the normal ray,
as well as the wavefront curvatures of the N- and NIP-
eigenwaves introduced by Hubral (1983). These seem to
be the intrinsic parameters of the problem as they offer
the potential of being further inverted for interval veloc-
ities (Hubral and Krey, 1980).

For various tested examples, the hyperbolic and multi-
focus approximations gave, as expected consistently bet-
ter results than the parabolic traveltime. It turned out
that in most examples, including the one shown here, the
multi-focus traveltime provided an even better approx-
imation to the true reflection time than the hyperbolic
one.

The fact that these three-paramter traveltime repre-
sentations provide quite reasonable approximations, not
only for the CMP traveltime curve but for the full multi-
coverage traveltime surface, demonstrates their potential
for use in an improved stacking procedure. For each cen-
tral point, data information will be stacked along a full
traveltime surface instead of the CMP hyperbola only.
The resulting stacked zero-offset section as obtained for
the optimal parameter combination (according to a max-
imum coherency criterion) is bound provide a signifi-
cantly better signal-to-noise enhancement than conven-
tional NMO/stack.
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FIG. 2. The upper part shows the traveltime surface
in the midpoint-half-offset domain as computed for the
velocity structure depicted in the lower part.

FIG. 3. The exact traveltime curve of Fig. 2 is com-
pared to the three traveltime approximations discussed
in the text, as computed for an arbitrarily chosen mid-
point.

FIG, 4. 2D cross-cuts for constant half-offsets of the
four traveltime surfaces of Fig. 3. For small offsets,
all approximations are almost identical to the true trav-
eltime (solid line). For greater offsets, the multi-focus
traveltime (dotted line) approximates the true curve
best. The hyperbolic approximation (dashed line) is a
little worse, but much better than the parabolic one
(dash-dotted line).
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